What does Mathematics look like at St. Luke's?

This is our philosophy:

•

What a Maths lesson looks like in our school:

- Mixed ability groupings / seating which allows children to work with different people over the course of time.
- Maths readily accessible through continuous provision in EYFS/Y1.
- Lots of talk—reasoning (Conditional)
- Problem solving throughout (Conditional)
- Mini plenaries to share misconceptions, pose questions, challenge ideas
- Access to manipulatives/concrete resources to help scaffold learning.

How does it work?

- We follow the White Rose Maths scheme where the learning is broken down into small steps. (**procedural**)
- KS1 follow the Mastering Number programme (Phonics for Maths) which is designed to embed firm foundations with number before children start KS2. (declarative/procedural)
- Focus on mathematical language children in Y1-6 complete a concept map at the beginning of a block and then add to this over the course of the unit. (procedural)
- Many opportunities to talk mathematically (Conditional/procedural)
- TA's sometimes used to pre-teach a concept ahead of the lesson and to consolidate learning after a lesson.
- Weekly arithmetic sessions where children have the opportunity to revise and consolidate key mathematical concepts. (**declarative**)
- Key Instant Recall Facts (KIRFS) are designed to support the development of the mental skills and key knowledge that underpin much of the maths we do here at St. Luke's. (**declarative**)

Categories of rehearsal/consolidation of learning					
Content category	Type 1 practice	Type 2 practice			
Declarative	Fact retrieval (recall)	Explaining relationships between facts (derivation and parsing of number)			
Procedural	Method rehearsal (exercises)	Explaining principles, proving conceptual understanding (such as, use of informal methods, creating bar models and interpreting context)			
Conditional	Strategies rehearsal (collections of problems with the same deep structure)	Describing relationships between the problem and choices of strategy (proof/reasoning)			

This is what we do:

- Staff are able to plan to suit themselves. We don't use a fixed planning pro forma and encourage teachers to plan for the needs of their own class following the WR small steps.
- Positive use of mistakes/misconceptions that are identified during live marking.
- Regular book scrutiny, learning walks & pupil voice.
- Whole school PD
- Raised profile of Mathematics termly maths days

This is what you might typically see:

- Open ended investigations- low threshold/high ceiling tasks
- Word problems & reasoning tasks
- Different representations of calculations
- Paired/group work
- Active maths where children move around the room/outside (cross curricular orienteering)
- Engagement and perseverance
- Children being challenged in their learning
- Learning being displayed on working walls in the classroom

This is how we know how well our pupils are doing:

- Internal tracking following our assessment criteria
- Concept maps
- End of unit assessments
- NFER assessments
- Pupil progress meetings
- Teacher assessment/targets
- Marking and feedback
- Photo evidence of practical maths
- Targeted use of TAs working with different groups of children and delivering daily intervention which is reported back to the class teacher.

This is the impact of the teaching:

- Confident children who can talk about maths
- A love of Maths
- Depth of understanding/application in different contexts
- Externally reported data KS1/2 SATs, Y4 MTC

Ebbinghaus Forgetting Curve

Homework – Expectation chn use TT rockstars/practise KIRFs

Concept maps – chn making links between concepts and allows them

UNIT	<u>KIRF</u>
KEY VOCAB	
<u>ARITHMETIC</u>	

Around the working wall, stick up key concepts that your children will need to refer to throughout the year.

Maths Books

- Date and WALT (underlined with a ruler)
- Underlined subheadings
- 1 number per box
- Concept maps to be used at the beginning of a unit (children to complete initially in pencil then add to it in colour as unit progresses).
- Yellow paper to be used for assessments at the end of the unit with questions taken from Testbase.

Maths Fluency Books

- Arithmetic
- KIRFs
- Interventions

KIRFS overview Y1-6

	Year 1 blue	Year 2 yellow	Year 3 orange	Year 4 purple	Year 5 red	Year 6 green
Autumn 1	I know number bonds for each number to 5	I know number bonds to 20	I know number bonds for each number up to 20	I know number bonds of 100	I can find factor pairs of a number	I can identify common factors of a pair of numbers
Autumn 2	I know number bonds to 10	I know doubles and halves for numbers to 20	I know the 3 times table (× and ÷)	I know the 6 and 9 times table (x and ÷)	I can recognise prime numbers up to 20	I can convert between fractions, decimals and %s
Spring 1	I can recognise numbers to 50	I know the 2 times table (x and ÷)	I know the 4 times table (× and +)	I know the 7 and 11 times table (x and +)	I can recognise equivalent fractions and decimals.	I can find a fraction of an amount
Spring 2	I know halves and doubles to 10	I know the 10 times table (x and ÷)	I know the 8 times table (x and ÷)	I know all times tables up to 12 ×12 (× and ÷)	I know decimal number bonds to 1 and 10	I can find a percentage of an amount
Summer 1	I know number bonds for each number up to 10	I know the 5 times table (× and +)	I can recall facts about durations of time	I can multiply and divide a single digit by 10 and 100	I can recall metric conversion	
Summer 2	I can tell the time to the nearest half an hour	I can tell the time to the nearest 5 minutes	I can tell the time to the nearest minute	I can recognise simple equivalent fractions	I can recall square numbers to 12 and their square roots	